Transparent Plastic Plate Characteristics

Characteristics of PET, Antistatic PVC, Acrylic and Polycarbonate

Provides four types of clear plates with superior transparency. In addition to the standard grade, antistatic grade with antistatic function is available, 4 colors, transparent, smoke brown, smoke gray and orange, are available.

It has approx. 4 times stronger impact resistance than that of acrylic. Moreover it is an environment-friendly material, which generates no poisonous gas when burned. It is also cost effective.

· Antistatic PVC

Excels in chemical resistance and flame resistance, and superior in cost-effectiveness among anti-static materials.

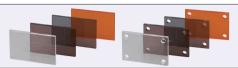
Excels in transparency, weather resistance and machinability, and is used widely for indoor and outdoor purposes, such as covers for industrial machinery, art display cases and signboards.

The level of impact strength is ranked as the highest among the transparent resin materials (approx. 30 times higher than that of acrylic plates), It excels in resistance against high and low temperatures, and is widely used.

					Representative Products										
					PET		PVC			Acrylic Economy (Extrusion)			Polycarbonate		
Item		JIS		Standard Antistatic		Antistatic		Antistatic			Antistatic	1			
		Testing		P.957		P.961	P.963		P.967		P.969				
				Method	PYA PYBA PYDA	PYTA PYBTA	ENBT ENBBT	ACA ACBA ACDA	ACTA ACBTA	ACAE	ACBAE	ACTAE ACBTAE	PCTA PCTBA PCTGA	PCTTA PCTBTA	PCTSP
Transmittance	Light Transmittance (Top: Transparent) (Middle: Smoke Brown) (Bottom: Smoke Gray)		-	%	PYA:87 PYBA:28 PYDA:45	PYTA:80 PYBTA:30	ENBT:80 ENBBT:29	ACA:93 ACBA:25 ACDA:43	ACRTA:79	ACAE:92	ACBAE:34	ACTAE:87 ACBTAE:25	PCTA:90 PCTBA:35 PCTGA:33	PCTTA:86 PCTBTA:35	PCTSP:91
	Tensile Strength		K-7113	MPa {kgf/cm²}	62 {630}	52 {530}	63 {640}	75 {760}	75 {760}	67 {682}	76 {774}	73 {754}	65 {663}	65 {663}	65 {663}
es	Elongation* K		K-7113	%	15	-	50	2~7	5	4	5	5	83	83	83
Properties	Bending Strength K-7		K-7203	MPa {kgf/cm²}	83 {850}	71 {730}	98 {1000}	117 {1200}	106 {1080}	111	125 {1274}	122 {1244}	90 {918}	90 {918}	93 {948}
<u>8</u>	Flexural Modulus		K-7203	MPa	2.4×10 ³	2.0×10 ³	3.4×10 ³	3.2×10 ³	3.3×10 ³	3400	3500	3300	2300	2300	2300
Mechan	Flexural Modulus K-7 Compression Strength Yield Point K-7		K-7181	MPa {kgf/cm²}	-	60 {610}	83 {850}	124 {1270}	-	120 {1200}	-	-	78 {795}	78 {795}	-
	Izod Impact Strength		K-7110	kJ/m²	10	-	2.9	2.7	-	2.5	1.5	2	15	15	-
	Rockwell Hardness M Scale		-	-	59	46	-	100	100	100	99	97	67	70	-
stics	Continuous Use		-	°C	-15~55	-15~55	-30~60	-30~80	-30~80	-30~70	-30~70	-30~60	-30~100	-30~100	-30~100
cteris	Deflection Temp. Under Load 0.45MPa		K-7191	°C	70	69	-	100	85	90	110	92	135	135	135
Chara	Linear Expansion Coefficient		K-7140	°C-1	6.8x10 ⁻⁵	7.5x10 ⁻⁵	7.0x10 ⁻⁵	7.0x10 ⁻⁵	5.9x10 ⁻⁵	7.0x10 ⁻⁵	7.0x10 ⁻⁵	7.0x10 ⁻⁵	6.5x10 ⁻⁵	5.2x10 ⁻⁵	6.5x10 ⁻⁵
Thermal Characteristics	Thermal Conductivity		-	W/m • K	-	-	0.16	0.21	-	0.21	0.21	-	0.24	-	-
Ther	Specific Heat		-	J/g • K	1.3	1.35	1.12	1.46	1.46	1.46	1.47	1.5	1.3	1.2	-
stics	Surface Resistivity		K-6911	Ω	>1010	10 ⁶ ~10 ⁸	10 ⁷ ~10 ⁸	>1015	10 ⁶ ~10 ⁸	>1015	>1016	10 ⁷ ~10 ⁸	>2.0x10 ¹⁶	10 ⁶ ~10 ⁸	>2.0x10 ¹⁶
Characteristics	Specific Volume Resistivity		K-6911	Ω·cm	>1011	>1017	-	>1015	>1017	>1015	>1015	>1015	>1017	>1017	>1017
hara	Insulation Breakdown	Voltage	K-6911	kV/mm	-	-	-	20	-	20	20	-	20	-	20
Electric (Dielectric Constant 1	0 ⁶ Hz	K-6911	-	3.2	-	-	3.2	2.9	3.1	4	-	3	3	3
음	Dissipation Factor 1	0 ⁶ Hz	K-6911	-	-	-	-	0.06	0.032	0.06	0.06	-	0.009	0.06	-
	Specific Gravity		-	-	1.27	1.27	1.4	1.2	1.2	1.2	1.19	1.19	1.2	1.2	1.2
LS	Water Absorption Ratio		K-7209	%	-	-	0.03	0.4	0.18	0.4	0.3	0.4	0.24	0.15	-
	Flame Resistance		-	-	-	-	Self-extinguishing	×	×	-	-	-	Self-extinguishing	-	-
Others		0il	-	-	0	0	0	0	0	0	0	0	0	×	0
	- i i	Acid	-	-	×	×	0	0	0	0	0	X~△	Δ	×	Δ
		Alkali	-	-	X~△	X~△	0	0	0	0	0	0	×	×	×
	Organ	nic Solvent	-	-	×	×	X~△	X~△	X~△	X∼△	X~△	X~△	×	×	×

Listed values are for reference, not guaranteed.

Characteristics of Acrylic Cast Plates and Extruded Plates


As for Acrylic Plates, cast plates made by cell-cast method and extruded plates are available.

Cast plates have better heat resistance and stronger mechanical strength than extruded plates.

Extruded plates are more inexpensive than cast plates.

When extruded plates have contact with vaporizing liquid such as methanol and methylene chloride after they are thermal-processed such as laser machining, they may have cracks. Also, extruded plates may have deflection at high temperature.

Transparent Plastic Plates

MISUMI provides clear plate of four materials superior in transparency.

In addition to the standard grade, antistatic grade with antistatic function is available. 4 colors, transparent, smoke brown, smoke gray and orange, are available.

Often used as a cover, and variety of options for mounting hole alterations are available. Use MISHMI Transparent Plastic Plates

Mat	erial	PE	ΞT	Vinyl Chloride (Antistatic)	Acrylic	(Cast)	Acrylic Economy (Extrusion)	Polycarbonate			
Pa	ige	P.973	P.957~	P.961	P.973	P.963~	P.967	P.973	P.969~		
	Width (B)	20~300	20~1000	100~ 900	20~300	20~1000	300~ 900	20~300	20~1000		
Size	Length (A)	20~300	20~2000	100~1100	20~300	20~2000	300~1100	20~300	20~2000		
Size	Plate Thickness (T)	0.5, 1.5	1, 2, 3, 4, 5, 8	3, 5	0.5, 1, 1.5, 2	3, 4, 5, 6, 8 10, 15, 20, 25	3, 5, 8	0.5, 1, 1.5, 2	3, 4, 5, 6, 8, 10		
Drilling	Method	Circular Sawing		Circular Sawing	Circular Sawing - 4-side Milling		Circular Sawing	Circular Sawing			
Dril	lling	Through Hole, Countersink, Keyhole, Threaded Insert									

Alterations Notching for Blind Joints of Aluminum Extrusions Relief at Four Corners Corner Radius Corner Cut Alterations CRD __ CN CN CRA, CRB, CRC, CRD CCA, CCB, CCC, CCD Code Machines relief for blind joints of aluminum extrusions. Adds radius to any corner. Cuts any corners. Margin against thermal expansion of the plate is not taken into account.

Changitudinal direction of notching is all on A dimension side. Machines relief at four corners. • Applicable to T3 and T5 only. 5 ≤ Corner Cut ≤ 50 R = 5mm Increment (10≤A(B)-R(2R) 5mm Increment Applicable to T3 and T5 only. ¶ 5≤CRA, CRB, CRC, CRD≤100 Orderina Code Spec. Ordering Code CN=25 ··· CN25 Ordering Code (Ex.)Adds R10 at the corner of A (Ex.)When the corners of A and D are cut and C. CRA10-CRC10 by C5··· CCA5-CCD5 Annlicable to standard sizes only Applicable to standard sizes only. Applicable to standard sizes only.

		See bel	ow for details.		ACAE - 800 - 600 - 3 - FS6 - ED6 - JS6 - KD6						
	Simple Joint Kits (P.604)		Single Joint Screw Joint Kits (P	2552, 603, 660, 706)	Pre-assembly Double Jo	oint Kits (P.611, 663, 709)	Center Joints	Post-assembly Double Joints			
			Single Joint Kit Standard Type	Single Joint Kits Narrow Type, Screw Joint Kits	Standard Type	Eccentric Nut Type	(P.553, 605, 662, 708)	(P.554, 607, 664, 710)			
Notched Shapes for Various Joints	(Ex. 1)	P anel notching red.	S	The figure above shows Single Joint Kit Narrow Type.	D	H	(Ex. 2)	A			
HFS5 Series 5	-		-	21 13	-	-	5	26			
HFS6 Series 6	8	- S	Portion that fits into slot	~ 	8 31	5 39	- 8	36			
HFS8 Series 8		-	11.5	11.5 -11.5 -11.5	11.5	11.5	- 11.5 - 12 III	11.5			
HFS8-45 Series 845		- nels, refer to F	2 17 2 2	12 N 17	12 2 2 10 48	2 58	*Notching is not required.	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			

Dimensions above include a margin of 1mm at the groove part.

Make the margin larger for engineered plastic plates and etc., because it expands or shrinks largely by the temperature fluctuation.

Ex.) When the temperature rises or falls by 10°C, the Acrylic Plate Economy Type (Extruded) with 1m length expands or shrinks by 0.7mm. The margin of approx. 2mm is necessary in the case of temperature difference of 30°C.

^{*} Values of elongation of polycarbonate and PET are % values measured by JIS K-7162-1B/50.